Resonant Extraction from the Debuncher for Mu2e

presenter: Leo Michelotti

in collaboration with: Jim Amundson

John Johnstone

Vladimir Nagaslaev

Chong Shik Park

Steve Werkema

with thanks to: Brian Drendel

Thomas Gardner

Dave Harding

Jim Morgan

Denton Morris

Oleksii Nikulkov

Peter Prieto

Mike Syphers

Dave Wildman

The two "hybrid" scenarios

- A: $3 \times 10^{12}/166.67$ msec B: $2 \times 10^{12}/100$ msec $\Rightarrow \langle dN/dt \rangle = 18 \times 10^{12}/$ sec, in each scenario.
- Replaced the dreaded "baseline scenario" of 2008-2009.

Some parameters

Quantity	Unit	Value
Beam		
Kinetic energy	Gev	8
Momentum	GeV/c	$8.88889, 8.88626^{(a)}$
Βρ	T-m	$29.6501^{(d)}$
$(\beta, \gamma, \beta \gamma)$		$(0.994, 9.526, 9.474)^{(d)}$
$(\Delta E)_{ m max}$	MeV	$100^{(k)}$
$(\Delta p/p)_{ m max}$		$0.0113^{(d)}$
$(\Delta t)_{\rm rms}$	nsec	$20-50^{(f)}$ (nominal: 40)
Initial emittance	π mm-mr	10-25 / βγ
Intensity	Tp (10 ¹² protons)	$3^{(b)}, 2^{(c)}$
<u>Debuncher</u>		
Circumference	m	$505.283, 505.294^{(a)}$
Rev. period	μ sec	$1.695^{(d)}, 1.685^{(f)}$
Rev. frequency	kHz	$590.038^{(d)}, 590.018^{(a)}$
Spill time ^(g)	msec	$166.67^{(b)}, 100^{(c)}$
N _{turns} /spill		$98,328^{(b)}, 58,997^{(c)}$
$\langle dN/dn \rangle$	Mp (10 ⁶ protons)	$30.51^{(b,d)}, 33.9^{(c,d)}$
$\langle dN/dt \rangle$	Tp / sec	$18^{(d,h)}$
Resonant tunes		$29/3^{(i)}, 19/2^{(j)}$
Acceptance	π mm-mr	$335^{(a)}/eta\gamma$
RF		
Harmonic number		4
Frequency	MHz	$2.36^{(d)}$
Voltage	kV	32

⁽a) Taken from Steve Werkema's presentation of November 18, 2008.

⁽b) Hybrid A scenario.

⁽c) Hybrid B scenario.

⁽d) Calculated from other parameters.

⁽e) Tentative value, from 2008.

⁽f) From Mike Syphers' Mu2e-doc-585-v3 (g) These numbers assume a 15 Hz Booster cycle. This is the total time alloted to extract beam. It should be reduced by $\approx 10\%$ to allow for setup before and cleanup after extraction.

(h) The gap in Hybrid B must be taken into account.

⁽i) Third integer.

⁽*j*) Half integer.

⁽k) This refers to the full width; that is, $(\Delta E)_{\text{max}} = 2(E - E_0)_{\text{max}}$ (l) For third-integer extraction: 393 kHz $\approx (2/3) \cdot 590$ kHz

Two resonances; horizontal phase space

• Third-integer resonance separatrix

• Half-integer resonance separatrix

Harmonic sextupoles and quadrupoles

• Location of harmonic sextupoles on two orthogonal circuits configured for third-integer resonance extraction.

• Location of harmonic quadrupoles on two orthogonal circuits for the half-integer configuration in which the straight sections' cells have been set individually to 60° , as in the arcs.

• Oh, yes...there is a septum and a lambertson too.

Anticipated VG: Simulation of third-integer extraction including space charge

- On the left are plots of the quadrupole circuit ramp, tune, sextupole ramp, and beam intensity during the spill. On the right, the green trace shows the turn-by-turn structure of the spill, while the red follows the field strength, on a log scale, of the RFKO oscillator.
- RFKO by itself is not strong enough to control fully the spill rate; micro-adjustment of the tune ramp is needed.

Orbit bounds

 ϕ_0 [degrees]

Phasor stability of third-integer resonance

• Hamiltonian exemplar for third-integer resonance:

$$H = \Delta v a^* a - iga^3 + ig^* a^{*3} + \cdots$$
$$= \Delta v I - (ge^{-i3\phi} + g^* e^{i3\phi}) I^{3/2} + \cdots$$

• $\Delta v = v_x - 29/3 \approx 0$ is the difference between the linear (small amplitude) horizontal tune and the resonant tune and is presumed to be small; the "resonance coupling constant," g, is a linear functional of the sextupole field strength distribution.

$$g = \frac{i}{6\sqrt{2}} \frac{1}{4\pi} \sum \frac{B''l}{B\rho} \beta_1^{3/2}(\theta) e^{-i3(\psi_1(\theta) - \Delta \nu \cdot \theta)}$$

- The phase of the complex parameter g determines the orientation of the third-integer separatrix: $|a_0|e^{i3\phi_0} = \Delta v/(3g^*)$.
- The phasors in *g*'s summand are reasonably stable during the squeeze. Thus, there should be no need for sextupoles to "track" the tune.

Half-integer resonance exemplar

Hamiltonian exemplar for half-integer resonance:

$$H = (\Delta v - G_2 e^{-i2\varphi} - G_2^* e^{i2\varphi})I + G_4 I^2 + \cdots ,$$

where $\Delta v \equiv v_x - 19/2 \approx 0$ is "small," and

$$G_2 = \frac{1}{8\pi} \sum_{\text{quadrupoles}} \frac{\delta B' l}{|B\rho|} \beta_x e^{-i2(\psi_x - \Delta \cdot \theta)}$$

$$G_4 = \frac{1}{32\pi} \sum_{\text{octupoles}} \frac{B'''l}{|B\rho|} \beta_x^2$$

• The expression " $\delta B'$ " indicates that only the fraction of quadrupole strength *not* contributing at first order to the tune must be used in the summand for G_2 .

$$r^2 = -\Delta/2G_4$$
, $c^{*2} = -G_2/G_4$, and $|a_0|^2 = r^2 - |c|^2 = -\frac{\Delta}{2G_4} - \frac{|G_2|}{|G_4|} = \frac{\operatorname{sgn}(\Delta) \cdot 2|G_2| - \Delta}{2G_4}$.

• Note: (a) G_4 and Δ must have opposite signs and (b) the stopband is $\pm 2|G_2|$.

Stepsize: third-integer; analytic

- For the "nominal" wire at 1.6 cm, at the extreme orientation, no particle crosses wire before its "reach" exceeds 5 cm. Even at $\varphi_0 = -120^{\circ}$, we need $\varepsilon_b \geq 30 \,\pi$ mm-mr (or thereabouts) before it falls below this bound.
- Placing wire closer increases inefficiency, so there is a tradeoff.
- Beyond $\phi_0 = -150^{\rm o}$ particles would travel inwards, toward the center of the bunch, before being extracted.

Stepsize, third integer: theory and simulation

- Comparison of previously calculated stepsize curves with simulations. Plots shown in the range $-150^{\circ} \le \varphi_0 \le -120^{\circ}$; $\varepsilon_x \cdot \beta \gamma = 10\pi$ mm-mr.
- Independent particle tracking; i.e. no space charge effects.
- As expected, theory overreaches, but agreement is better than expected.

Inefficiency, third-integer: theory and simulation

- Comparison of previously calculated inefficiency curves with third-integer simulations.
- Bottom line: Getting below 5% inefficiency at the septum should not be difficult; 2%-3% may be doable; below that cannot be guaranteed without reducing the wire size.

Stepsize and inefficiency: half-integer; quadrature

- Calculations carried out assuming the ratio, $\varepsilon_b/\varepsilon_c = \pi/(3\sqrt{3})$, for invariant emittance $\beta\gamma \varepsilon_b/\pi = 20, 30, 40, 50$ mm-mr.
- Initial tune: $(\Delta \nu)_{initial} = -0.02$. Two lobes of the 1/2 integer separatrix separated "horizontally" in (normalized) phase space: i.e. $\phi_0 = \pm 180^\circ$.
- Standard 100 μ m wire width; "nominal" placement, $x_w \approx -1.6$ cm.

Inefficiency, half-integer: theory and simulation

• (Not quite) comparison of previously calculated inefficiency curves with half-integer simulations.

Simulation of third-integer extraction including space charge

- On the left are plots of the quadrupole circuit ramp, tune, sextupole ramp, and beam intensity during the spill. On the right, the green trace shows the turn-by-turn structure of the spill, while the red follows the field strength, on a log scale, of the RFKO oscillator.
- RFKO by itself is not strong enough to control fully the spill rate; micro-adjustment of the tune ramp is needed.

*

Extracted beam

• Phase space

Histograms

- Warning: plots made at septum, not lambertson.
- Histograms reveal distribution's skew.
- With origin set at centroid, the ellipse enclosing 99% of the beam corresponds to $\beta_x = 14$ m, $\alpha_x = -0.57$, and $\epsilon_x/\beta\gamma = 1.2\pi$ mm-mr.

Tune scans in Debuncher (w/ B.Drendel, J.Morgan)

• Near $v_x = 29/3$

• Near $v_x = 19/2$

• The strong $(|\Delta v_x| < 0.025)$ half-integer stopband would have to be either nullified or mapped and controlled.

Original motivation for the tune scan

- Extreme simulation: protons lost along parasitic resonances.
- "Extreme" means (a) 12×10^{12} protons per bunch and (b) zero $\delta p/p$.
- Shown at Mu2e Collaboration Meeting on June 3, 2010.

More recent tune footprints

• Tune footprints have improved because of reduced intensity of the Hybrid scenarios and effect of Debuncher dispersion on non-zero $\delta p/p$ orbits.

• Loss ratio before extraction begins is now estimated at $\approx 10^{-4}$.

卆

Where we are ...

Lattice models.

- ⇒ Accumulator and Debuncher lattice files written based on pbar source conceptual design reports are adequate (for now) to study half-integer and third-integer extraction.
- After CD-1 approval, more "dirt" will be added to the model: e.g. power supply ripple, misalignments, closed orbit control and error fields.
- ⇒ Control multipoles placed in two of the three straight sections; extraction septum and lambertson in the third. Care taken to maintain zero dispersion in straights.

• Theory and quadrature.

⇒ Basic theory understood and programs written to perform analysis and quadrature: e.g. stepsize and inefficiency. In reasonable shape, but not finished. Studies will continue.

Simulations.

- ⇒ Independent particle simulations (CHEF), based on our Debuncher lattice model, adequately validate third-integer resonance theory; work continuing on the half-integer comparisons, but so far no "red flags." Confident theory can be used for conceptual design.
- ⇒ Software for multi-particle simulations (ORBIT and SYNERGIA) "works" and is being used.
- But not without engaging challenges: e.g. parallel computing glitches; software instabilities.

Machine studies.

⇒ Debuncher tune scans finished for now. MI half-integer studies devolved into studying the Main Injector rather than the half-integer resonance. Given three more months to work with, more may be done, but it depends on time and resource conflicts with competing activities.

Conclusions ...

- This year's "hybrid" scenarios, with their reduced intensities, and large dispersion in the Debuncher arcs reduce the space charge tune footprint enough to make slow extraction conceivable.
- Recommend RFKO be added to Fermilab's suite of control devices to "heat" beams with initially small emittances.
- Have (reasonably) successfully simulated slow third-integer extraction in the presence of space charge. Space charge still needs to be added to a half-integer simulation. Continuing analysis needed for both.
- A few hundred to (less than) a thousand turns suffice to acclimate an injected bunch to its separatrix. (The time budget of the Hybrid scenarios allow for several thousand.)
- For perfect model, currently estimate loss ratio of a few 10^{-4} before extraction begins, presumably due to parasitic resonance lines.
- Roughly, 3%-5% of protons will be lost hitting the septum's wire. This is more problematic for small emittances and half-integer resonance.
- Currently, third integer preferred to half-integer.
- If the instability studies hold up, chromaticity can be small. This will reduce reduce "blurring" the separatrix due to $\delta p/p$.
- Two cost estimates done: six sextupoles will cost \approx \$340,000; RFKO, \approx \$59,000-\$160,000, depending on power considerations. (Thanks to Dave Harding, Tom Gardner and Dave Wildman.)

Concerns

- Finish septum and lambertson design bounds based on stepsize, inefficiency, and aperture considerations.
- Hardware specification list(s) and cost estimate(s) barely begun.
 Must be finished before CD-1 review.
- Map distributions of losses around the ring and (phase space) protons injected into transfer line.
- What is the real requirement on turn-by-turn stability??? (Meeting to take place next month.)
- What instrumentation and control (if any) can achieve this requirement?
- Integrate better (or at all) with extraction beamline.
 - ⇒ Missing segment: lambertson to the "stub."
 - \Rightarrow 6D phase space distributions and histories at entrance to extraction line.
- Finish comparison and interpretation of theory and independent particle simulations for half-integer inefficiency (and stepsize).
 - ⇒ Recommend design parameters based on these.
- No simulation yet of half-integer resonance extraction with space charge included.
 - ⇒ How much should this be pushed? Should we deprecate half-integer extraction and be done with it?
- Engineers and scientists needed: hardware design, cost estimates, instrumentation and controls.

EXTRA VIEWGRAPHS

ALL VIEWGRAPHS BEYOND THIS POINT ARE "EXTRA."

Activities

Three facets:

- Orbit theory of resonance:
 - ⇒ Analysis: substance identical to 25-40 forty years ago but different form.
 - ⇒ Quadrature: a few calculations can be done: stepsize, "(in)efficiency"
- Simulations
 - ⇒ Independent particles: to test theory. (Missing terms can haunt you.)
 - ⇒ Multiparticle: including space charge.
- Experiments (i.e. machine studies)
 - ⇒ Tune scans of Debuncher.
 - ⇒ Half-integer extraction from Main Injector.

Underneath them all:

- "Clean" accelerator models:
 - ⇒ MAD v.8 lattice files written for Debuncher and Accumulator using descriptions written in *The Fermilab Antiproton Source Design Report* (c.1982).
 - ⇒ Debuncher file later translated into Optim syntax too.

• Software:

- ⇒ MAD: redesigning phase advances and lattice functions.
- ⇒ ORBIT: 2 D & 2.5 D space charge calculations
- ⇒ SYNERGIA: 2 D & 3 D space charge calculations
- ⇒ CHEF: build model from MAD description; independent particle tracking; construct transfer maps for SYNERGIA
- ⇒ OPTIM: construct transfer maps for ORBIT

Hardware costs

- <u>SEXTUPOLES</u> (third-integer) For third-integer extraction we are proposing two families of three bussed sextupoles possessing the following properties:
- \circ Integrated strengths (for each): |B''l| is in the range 30-110 T/m, depending on assumptions going into various scenarios; approximately 50 T/m is a reasonable estimate.
- o Length: 25-50 cm.
- Minimum horizontal aperture: about 6-8 cm ???
- Ramp time: under some scenarios, sextupoles would be DC, not ramped. Under others, they would have to go from zero to full field in something like 5 msec.
- We assume no constraints on outside dimensions.
- \circ Field quality: the canonical "few parts in 10^4 at one inch" is expected to be adequate possibly even better than needed. The estimated costs required to construct six such magnets are:

Material: \$27,720 Labor : \$104,640 EDIA : \$146,496 Tooling : \$52,000 -----Total : \$340,000

- <u>RFKO oscillator</u> An important new component definitely to be used for third-integer extraction and most probably for half-integer as well will be a horizontal electric field oscillator to implement RF knockout. We expect that a Tevatron style damper would accomodate its requirements:
- o Frequency: 3 kHz to 10 MHz
- o Maximum field amplitude: 8.6 kV/m
- \circ Length: $\approx 1.4 \text{ m}$
- o Gap: 6.4 cm

If so, a spare is available at no "extra" cost for construction. However, two power amplifiers of 800 Watts each will cost \$59,000; or two 1.5 kWatt commercial amplifiers would cost \$160,000. Those are hardware costs alone.

• NO COST ESTIMATES for septum and lambertson, trim quadrupoles (tune control), Octupoles and harmonic quadrupoles

(half-integer), diagnostics and control.

*

Documents in Mu2e docdb

Documents were added to the Mu2e document database throughout 2009-2010. As of September:

- 415-v3 Accumulator & Debuncher Overview
- 422-v1 Third Integer Extraction from the Debuncher
- 423-v1 3rd Integer Extraction from Debuncher Progress Report, Part II
- 457-v1 Phase Space of Tune Scan
- 512-v0 Space Charge Simulations for the Mu2e Experiment at Fermilab
- 537-v1 Space Charge Update
- 549-v1 Space Charge Calcs Update
- 555-v1 Half-Integer Resonant Extraction from the Debuncher
- 556-v3 Preliminaries toward studying resonant extraction from the Debuncher
- 576-v1 An Alternative Approach to 1/2-Integer Resonant Extraction Using a Supplementary 0th-Harmonic Quadrupole Circuit.
- 673-v1 Debunch_20081112.lat
- 744-v1 Proton Delivery
- 768-v4 Documents on resonant extraction
- 775-v1 On using the RFKO method for resonant extraction
- 878-v3 Parameters for simulating extraction from the Debuncher
- 879-v1 March 12, 2010: Meeting with controls and machine experts re extraction studies.
- 980-v1 Procedure for preparing a simulation of half-integer extraction
- 982-v1 Status of Extraction Studies
- 1021-v1 Step size, efficiency, and the septum; notes from quadrature.
- 1024-v1 Status: extraction studies from Main Injector.